Genetic, phytochemical and morphological identification and genetic variety of chosen Moringa species
Amaglo, N. Ok., Bennett, R. N., Curto, L. & Rosa, R. B. Lo Turco V. Profiling chosen phytochemicals and vitamins in several tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Meals Chem. 122, 1047–1054 (2010).
Google Scholar
Rani, N. Z., Husain, Ok. & Kumolosasi, E. Moringa ganus: A assessment of phytochemistry and pharmacology. Entrance. Pharmacol. 9, 108 (2018).
Google Scholar
Olson, M. Intergeneric relationships inside the Caricaceae-Moringaceae Clade (Brassicales) and potential morphological synapomorphies of the clade and its households. Int. J. Plant. Sci. 163, 51–65 (2002).
Google Scholar
Mallenakuppe, R. H., Homabalegowda, M. D. & Gouri, P. Historical past, taxonomy and propagation of Moringa oleifera– a assessment. SSR Inst. Int. J. Life Sci. 5, 2322–2327 (2019).
Google Scholar
Ruiz, A. I., Mercado, M. I., Guantay, M. E. & Ponessa, G. I. Anatomía E histoquímica foliar y caulinar de Moringa oleifera (Moringaceae). Bol. Soc. Argent. Bot. 54, 325–343 (2019).
Google Scholar
Migahid, A. M. Flora of Saudi Arabiavol. 1101 (Riyadh College Publication, 1978).
Leone, A. et al. Cultivation, genetic, ethnopharmacology, phytochemistry advert pharmacology of Moringa oleifera leaves: An summary. Int. J. Mol. Sci. 16, 12791–12835 (2015).
Google Scholar
Chase, M. et al. An ordinal classification for the households of flowering vegetation. Ann. Missouri Bot. Gard. 85, 531–553 (1998).
Google Scholar
Anwar, F., Latif, S., Ashraf, M. & Gilani, A. Moringa oleiaera: A meals plant with a number of medicinal makes use of. Phytother Res. 21, 17–25 (2007).
Google Scholar
Boukandoul, S., Casal, S. & Zaidi, F. The potential of some Moringa species for seed oil manufacturing. Agriculture. 8, 150 (2018).
Google Scholar
El-Awady, M., Hassan, M., Abdel-Hameed, E. & Gaber, A. Comparability of the antimicrobial actions of the leaves-crude extracts of Moringa peregrina and Moringa oleifera in Saudi Arabia. Int. J. Curr. Microbiol. App Sci. 4, 1–9 (2015).
Google Scholar
Gopalakrishnan, L., Doriya, Ok. & Kumar, D. Moringa oleifera: A assessment on nutritive significance and its medicinal utility. Meals Sci. Hum. Wellness. 5, 49–56 (2016).
Google Scholar
Rashid, U., Anwar, F., Moser, B. & Knothe, G. Moringa oleiferaaoil: A doable supply of biodiesel. Bioreso Technol. 99, 8175–8179 (2008).
Google Scholar
Robiansyah, I., Hajar, A., Al-kordy, M. & Ramadan, A. Present standing of economically essential plant Moringa Peregrina (Forrsk.) Fiori in Saudi Arabia: A assessment. Int. J. Theore Appl. Sci. 6, 79–86 (2014).
Padayachee, B. & Baijnath, H. An summary of the medicinal significance of Moringaceae. J. Med. Plant. Res. 6, 5831–5839 (2012).
Seifu, E. Precise and potential functions of Moringa stenopetala, underutilized indigenous vegetable of southern Ethiopia: A assessment. Int. J. Agric. Meals Res. 3, 8–19 (2014).
Ezeamuzie, T., Amberkedeme, A., Shode, F. & Ekwebelem, S. C. Antiinflammatory results of Moringa oleifera root. Int. J. Pharmacogn. 34, 207–212 (1996).
Google Scholar
Mohammed, S. et al. An summary of pure plant antioxidants: Evaluation and analysis. Adv. Biochem. J. 1, 44–72 (2013).
Jayeola, A. Anatomical identification of plant fragments within the powdered samples of Moringa oleifera Lam. (Moringaceae), in The Nationwide Summit on Moringa Growth, Abuja (2010).
Okoye, E., Ezeifeka, G. & Nworu, C. Analysis of the antiviral exercise of Moringa oleifera on three RNA viruses, in The Nationwide Summit on Moringa Growth, Abuja (2010).
Noraini, T. & Cutler, D. Leaf anatomical micromorphological characters of some Malaysian Parashorea (Dipterocarpaceae). J. Trop. Sci. 21, 156–167 (2009).
Sharma, A., Sehrawai, S., Singhrot, R. & Tele, A. Morphological chemical characterization of Psidium species. Notulae Boanicae Horti Agrobotanici Cluj-Napoca (2010).
Soladoye, M., Sonobare, M. & Chukwuma, E. Morphometric examine of the Genus Indigofera Linn. (Leguminosae-Papilionoideae) in south-western Nigeria. Int. J. Bot. 6, 227–234 (2010).
Google Scholar
Abubakar, B., Mua’zu, S., Khan, A. & Adamu, A. Morpho-anatomical variation in some accessions of Moringa oleifera Lam. From northern Nigeria. Afr. J. Plant. Sci. 5, 742–748 (2011).
Kumar, P., Singh, Ok. & Kumar, A. Hepatoprotective research on aerial elements of Moringa oleifera Lam. On carbon tetrachloride induced liver cell harm in albino rats. Ann. Biol. Res. 1, 27–35 (2010).
Nibret, E. & Wink, M. Trypanocidal and antileukaemic results of the important oils of Hagenia Abyssinica, Leonotis Ocymifolia, Moringa Stenopetala, and their fundamental particular person constituents. Phytomedicine. 17, 911–920 (2010).
Google Scholar
Walter, A., Samuel, W., Peter, A. & Joseph, O. Antibacterial exercise of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on micro organism implicated in water borne illnesses. Afr. J. Microbiol. Res. 5, 153–157 (2011).
Tahany, M. et al. Examine on mixed antimicrobial exercise of some biologically energetic constituents from wild Moringa peregrina Forssk. J. Yeast Fungal Res. 1, 015–024 (2010).
Lalas, S. & Tsaknis, J. Characterization of Moringa oleifera seed oil selection periyakulam 1. J. Meals Compos. Anal. 15, 65–78 (2002).
Google Scholar
Gandji, Ok. et al. Standing and utilisation of Moringa oleifera Lam: A assessment. Afr. Crop Sci. J. 26, 137–156 (2018).
Google Scholar
Shindano, J. & Kasase, C. Moringa (Moringa oleifera): A supply of meals and vitamin, drugs and industrial merchandise, in In African Pure Plant Merchandise: New Discoveries and Challenges in Chemistry and High quality, ACS Symposium Sequence, Washington, DC, American Chemical Society, 421–467 (2009).
Uilah, N., Zahoor, M., Khan, F. & Khan, S. Evaluation on common introduction to medicinal vegetation, its phytochemicals and roles of heavy metallic and inorganic constituents. Life Sci. J. 11, 520–527 (2014).
El-Dahiyat, F., Rashrash, M., Abuhamdah, S., Farha, R. & Babar, Z. Natural medicines: A cross-sectional examine to guage the prevalence and predictors of use amongst Jordanian adults. J. Pharm. Coverage Pract. 3, 2 (2020).
Google Scholar
Mahdy, E., El-Sharabasy, S. & El-Dawayati, M. In vitro manufacturing of quinones, In Nutraceuticals Manufacturing from Plant cell Manufacturing facility, Singapor, Springer, Singapore, 345–374 (2022).
Google Scholar
Gong, H. et al. Results of a number of quinones on insulin aggregation. Sci. Rep. 4, 5648 (2014).
Google Scholar
Lorenzo, J. et al. Principal traits of peanut pores and skin and its position for the preservation of meat merchandise. Developments Meals Sci. Technol. 77, 1–10 (2018).
Google Scholar
Senthilkumar, A., Karuvantevida, N., Rastrelli, L., Kurup, S. & Cheruth, A. Conventional makes use of, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori.- a assessment. Entrance. Pharmacol. 9, 465 (2018).
Google Scholar
Ganesan, S. et al. Genetic variety and inhabitants construction examine of drumstick (Moringa oleifera Lam.) Utilizing morphological and SSR markers. Ind. Crop Prod. 60, 316–325 (2014).
Google Scholar
Saini, R. Ok., Saad, Ok. R., Ravishankar, G. A., Giridhar, P. & Shetty, N. P. Genetic variety of commercially grown Moringa oleifera Lam. Cultivars from India by RAPD, ISSR and cytochrome P450-based markers. Plant. Syst. Evol. 299, 1205–1213 (2013).
Google Scholar
Zaghloul, M., El-Wahab, A., Moustafa, A. & R., & Ecological evaluation and phenotypic and health variation of Sinai’s populations of Moringa Peregrina. Appl. Ecol. Environ. Res. 8, 351–336 (2010).
Google Scholar
Osman, H. E. & Abohassan, A. A. Morphological and analytical characterization of Moringa Peregrina populations in western Saudi Arabia. Int. J. Theor. Appl. Sci. 4, 174–184 (2012).
Sharla, N., Bobba, S. & Siddiq, E. ISSR and SSR markers based mostly on AG and GA repeats delineate geographically various Oryza Nivara accessions and reveal uncommon alleles. Curr. Sci. 84, 683–690 (2003).
Mahdy, E., Ibrahim, S., EL-Shaer, H. & Mansour, M. Genetic variety and relationship between Egyptian Vigna (Vigna spp. (L.) Walp.) Taxa populations through phenotypic and molecular profiling. Vegetos. (2024).
Google Scholar
Sanchez, H., Loarce, J. & Ferrer, E. Easy sequence repeat primers utilized in polymerase chain response amplifcation to review genetic variety in barley. Genome. 39, 112–117 (1996).
Google Scholar
Joshi, C., Zhou, H., Huang, X. & Chiang, V. Context sequences of translation initiation codon in vegetation. Plant. Mol. Biol. 35, 993–1001 (1997).
Google Scholar
Sawant, S., Singh, P., Gupta, S., Madnala, R. & Tuli, R. Conserved nucleotide sequences in extremely expressed genes in vegetation. J. Genet. 78, 123–131 (1999).
Google Scholar
Gupta, M., Chyi, Y., Romero-Severson, J. & Owen, J. Amplification of DNA markers from evolutionary various genomes utilizing single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006 (1994).
Google Scholar
Williams, J., Kubelik, A., Livak, Ok., Rafalski, J. & Tingey, S. DNA polymorphisms amplified by arbitrary primers are helpful as genetic markers. Nucleic Acids Res. 18, 6531–6539 (1990).
Google Scholar
Bailey, L. in Handbook of Cultivated Crops. 601–609 (eds Bailey, L.) (New York, Macmillan Co., 1924).
Nagata, M. & Yamashita, I. Easy technique for simultaneous dedication of chlorophyll and carotenoids in tomato fruit. J. Japanese Soc. Meals Sci. Technol. 39, 925–928 (1992).
Google Scholar
Singleton, V., Orthofer, R. & Lamuela-Raventos, R. Evaluation of complete phenols and different oxidation substances and antioxidants via Folin Ciocalteu reagent. Strategies Enzymol. 299, 152–178 (1999).
Google Scholar
Woisky, R. & Salation, A. Evaluation of propolis: Some parameters and procedures for chemical high quality management. J. Agric. Res. 37, 99–105 (1998).
Google Scholar
Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capability by the formation of a phosphomolybdenum complicated: Particular utility to the dedication of vitamin E. Anal. Biochem. 269, 337–341 (1999).
Google Scholar
Klein, B. & Perry, A. Ascorbic acid and vitamin A exercise in chosen greens from completely different geographical areas of the USA. J. Meals Sci. 47, 941–945 (1982).
Google Scholar
Abdel-Wareth, M., El-Hagrassi, A., Abdel-Aziz, M., Nasr, S. & Ghareeb, M. Organic actions of endozoic fungi remoted from Biomphalaria alexandrina snails maintained in several environmental circumstances. Int. J. Environ. Sci. 76, 780–799 (2019).
Google Scholar
Madkour, H. et al. Gasoline chromatography-mass spectrometry evaluation, antimicrobial, anticancer and antioxidant actions of n-hexane and methylene chloride extracts from Senna italica. J. App Pharm. Sci. 7, 023–032 (2017).
Google Scholar
Shawky, B. et al. Analysis of antioxidants, complete phenolics and antimicrobial actions of ethyl acetate extracts from fungi grown on rice straw. J. Renew. Mater. 7, 667–682 (2019).
Google Scholar
Khalaf, O., Abdel-Aziz, M., El-Hagrassi, A., Osman, A. & Ghareeb, M. Biochemical side, antimicrobial and antioxidant actions of Melaleuca and Syzygium species (Myrtaceae) grown in Egypt. J. Phys. Conf. Ser. 1879, 022062 (2021).
Google Scholar
Mahdy, E., El-Shaer, H., Sayed, A. & El-Halwagi, A. Genetic variety of native cowpea (Vigna spp. (L.) Walp.) Accessions cultivated in some areas of Egypt. Jordan J. Biol. Sci. 14, 775–789 (2021).
Google Scholar
Collard, B. & Mackill, D. Begin codon focused (SCoT) polymorphism: A easy novel DNA marker method for producing gene-targeted markers in vegetation. Plant. Mol. Biol. Rep. 27, 86–93 (2009).
Google Scholar
Jaccard, P. Nouvelles recherches sur la distribution florale. Lausanne, Rouge. Bull. Soc. Vaud Sci. Nat. 44, 223–270 (1908).
Nei, M. & Li, M. Mathematical mannequin for finding out genetic variation by way of restriction endonucleases. Proc. Nat. Acad. Sci. 76, 5269–5273 (1979).
Sendecor, G. & Cochran, W. Statistical strategies, seventh Version. ed., Oxford and J.B.H. Publishing com (1990).
Cube, L. Measures of the quantity of ecologic affiliation between species. Ecology. 26, 297–302 (1945).
Google Scholar
Azza, S. Morpho-anatomical variations of leaves and seeds amongst three Moringa species. Life Sci. J. 11, 827–832 (2014).
Rangnath, Ok., Radhakrushna, Ok. & Narayanlal, S. Moringa oleifera: Morphology and medicinal use. Ijariie. 9, 4395–4396 (2023).
Zhigila, D., Mohammed, S., Oladele, F. & Sawa, F. Numerical analyses of leaf and fruit exterior morphology in Moringa oleifera Lam. J. Teknol (Sci Eng). 77, 123–131 (2015).
El-Ghadban, E., Abou El-leel, O. & Mahdy, E. Morphological, phytochemical and molecular characterization on some Jatropha species cultivated in Egypt. Int. J. Pharm. Sci. Scient Res. 3, 1–13 (2017).
Wang, Y. et al. Subcritical ethanol extraction of flavanoids from Moringa oleifera leaf and analysis of antioxidant exercise. Meals Chem. 218, 152–158 (2017).
Google Scholar
Irshad, M., Ahmed, I., Goel, H. & Rizvi, M. Phytochemical screening and excessive efficiency TLC evaluation ofsome cucurbits. Res. J. Phytochem. 4, 242–247 (2010).
Google Scholar
Ren, W., Oiao, Z., Wang, H., Zhu, L. & Zhang, L. Promising anticancer brokers. Med. Res. Rev. 23, 519–534 (2003).
Google Scholar
Aggarwal, B. & Shishodia, S. Molecular targets of dietry brokers for prevention and remedy of most cancers. Biochem. Pharmacol. 71, 1397–1421 (2006).
Google Scholar
Thirunavukkarasu, P., Ramanathan, T., Ramkumar, I. & Shanmugapriya, R. Anti-ulcer impact of Avicennia officinalis leaves in albino rats. World Appl. Sci. J. 9, 55–58 (2010).
Google Scholar
Singh, A., Duggal, S. & Suttee, A. AcaIlicifoliusfolius Linn-lesser recognized medicinal vegetation with important pharmacological actions. Int. J. Phytomed. 1, 1–3 (2009).
Google Scholar
Ganesh, S. & Vennila, J. Phytochemical evaluation of Acanthus Ilififolius and Avicennia officinalis by GC-MS. Res. J. Phytochem. 5, 60–65 (2011).
Google Scholar
Abdel Baky, H. & El-Baroty, G. Characterization of Egyptian Moringa peregrine seed oil and its bioactivities. Int. J. Handle. Sci. Bus. Res. 2, 98–108 (2013).
El-Alfy, T., Ezzat, S., Hegazy, A., Amer, A. M. & Kamel, G. Isolation of biologically energetic constituents from Moringa peregrina (Forssk.) Fiori. (household: Moringaceae) rising in Egypt. Pharmacogn. Magazine. 7, 109–115 (2011).
Teixera, E. M., Carvalho, M. R., Neves, V. A., Silva, M. A. & Arantes-Pereira, L. Chemical traits and fractionation of proteins from Moringa oleifera Lam. Leaves. Meals Chem. 147, 51–54 (2014).
Google Scholar
Saini, R., Shetty, N. & Giridhar, P. Carotenoid content material in vegetative and reproductive elements of commercially grown Moringa oleifera Lam. Cultivars from India by LC-APCI-MS. Eur. Meals Res. Technol. 238, 971–978 (2014).
Google Scholar
Saini, R., Sivanesan, I. & Keum, Y. Phytochemicals of Moringa oleifera: A assessment of their dietary, therapeutic and industrial significance. 3 Biotech. 6, 1–14 (2016).
Google Scholar
Mathur, B. Moringa Guide. St. Louis, MI Timber for Life Worldwide. (2005).
Zaghloul, M., Hamrick, J. & Moustafa, A. Conservation genetics of Sinai’s remnant populations of Moringa Peregrina, an economically worthwhile medicinal plant. Conserv. Genet. 13, 9–19 (2012).
Google Scholar
Melaku, Y., Arnold, N., Schmidt, J. & Dagne, E. Evaluation of the husk and kernel of the seeds of Moringa Stenopetala. Bull. Chem. Soc. Ethiop. 31, 107–113 (2017).
Google Scholar
Maqbul, M. et al. Comparative examine of Moringa oleifera with Moringa peregrine seed oil utilizing GC-MS and its antimicrobial exercise towards Helicobacter pylori. Orient. J. Chem. 36, 481–492 (2020).
Google Scholar
El Sayed, A., Omar, F., Emam, M., Farag, M. & UPLC-MS/MS GC-MS based mostly metabolites profiling of Moringa oleifera seed with its anti-Helicobacter pylori and anti inflammatory actions. Nat. Prod. Res. 36, 6433–6438 (2022).
Google Scholar
Jain, A., Bhitia, S., Banga, S., Prakash, S. & Laxmikumaran, M. Potential use of RAPD method to review the genetic variety in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor. Appl. Genet. 88, 116–122 (1994).
Google Scholar
Gupta, S. et al. Analogy of ISSR and RAPD markers for comparative evaluation of genetic variety amongst completely different Jatropha curcas genotypes. Afr. J. Biotechnol. 7, 4230–4243 (2008).
Google Scholar
Tatikonda, L. et al. AFLP-Based mostly molecular characterization of an elite germplasm assortment of Jatropha curcas L., a biofuel plant. Plant. Sci. 176, 505–513 (2009).
Google Scholar
El-Taher, A. et al. Characterization of some Cichorium taxa grown below mediterranean local weather utilizing morphological traits and molecular markers. Crops. 12, 388 (2023).
Google Scholar
Botstein, D., White, R., Skolnick, M. & Davis, R. Building of a genetic linkage map in man utilizing restriction fragment size polymorphism. Am. J. Hum. Genet. 32, 314–331 (1980).
Google Scholar
Shannon, C. A mathematical principle of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Google Scholar
Mahdy, E. & Rizk, R. Genetic variation of arta populations (Calligonum Polygonoides subsp. comosum) in Egypt: Genepools for biodiversity and afforestation genetic variation of arta populations. J. Water Land. Dev. 56, 81–90 (2023).
Google Scholar
Simpson, E. Measurement of variety. Nature. 163, 688 (1949).
Google Scholar
Pielou, E. The measurement of variety in various kinds of organic collections. J. Theoret Biol. 13, 131–144 (1966).
Google Scholar
Shaltout, Ok. & Bedair, H. Range, distribution and regional conservation standing of the Egyptian tree flora. Afr. J. Ecol. 60, 1155–1183 (2022).
Google Scholar
Abd El-Wahab, M. Reproductive ecology of untamed bushes and shrubs in southern Sinai, M.Sc. thesis, Suez Canal College (1995).

Emily Grace Thompson is a natural health expert and author with over 10 years of experience in nutrition. Passionate about superfoods, she advocates for the benefits of Moringa Magic Supplements, which transformed her own health journey. Emily writes to educate and inspire readers to adopt a healthy lifestyle, highlighting how moringa can boost energy, strengthen immunity, and improve overall well-being. In addition to writing, she conducts holistic health workshops and shares practical tips for achieving a balanced life.
Publicar comentário